Invited paper - Rapid

Hydrogen storage in sonicated carbon materials

M. Hirscher^{1,*}, M. Becher¹, M. Haluska¹, U. Dettlaff-Weglikowska², A. Quintel², G.S. Duesberg², Y.-M. Choi², P. Downes², M. Hulman², S. Roth², I. Stepanek³, P. Bernier³

¹ Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany

² Max-Planck-Institut f
ür Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany

³GDPC, University of Montpellier II, 34095 Montpellier cedex 05, France

Received: 18 December 2000/Accepted: 18 December 2000/Published online: 9 February 2001 - @ Springer-Verlag 2001

Abstract. The hydrogen storage in purified single-wall carbon nanotubes (SWNTs), graphite and diamond powder was investigated at room temperature and ambient pressure. The samples were sonicated in 5 M HNO3 for various periods of time using an ultrasonic probe of the alloy Ti-6Al-4V. The goal of this treatment was to open the carbon nanotubes. The maximum value of overall hydrogen storage was found to be 1.5 wt %, as determined by thermal desorption spectroscopy. The storage capacity increases with sonication time. The sonication treatment introduces particles of the Ti alloy into the samples, as shown by X-ray diffraction, transmission electron microscopy, and chemical analysis. All of the hydrogen uptake can be explained by the assumption that the hydrogen is only stored in the Ti-alloy particles. The presence of Ti-alloy particles does not allow the determination of whether a small amount of hydrogen possibly is stored in the SWNTs themselves, and the fraction of nanotubes opened by the sonication treatment is unknown.